bannière © iEES Paris logo_UPMC logo_UPEC logo_Paris-Diderot logo_CNRS-INEE logo_IRD Accueil Accueil

Suivez nous sur

twitter
facebook

Rechercher



Accueil du site > Départements scientifiques > Ecologie évolutive > Les équipes > Les espèces sociales dans leurs environnements : adaptation et évolution (ESEAE)

Les espèces sociales dans leurs environnements : adaptation et évolution (ESEAE)

-------------------------------------------------------------------------------------------


Thématiques de recherche

L’objectif de l’équipe ESEAE est de comprendre comment la vie en société influe sur les mécanismes d’évolution et d’adaptation à l’environnement des espèces sociales, sur leur biodiversité, et sur les interactions qu’elles établissent avec le reste du vivant. Les changements environnementaux sont un thème transversal.
Nos travaux reposent principalement sur les modèles d’insectes sociaux termites et fourmis. Nous employons une approche intégrative se focalisant sur la morphologie, la physiologie, le comportement, le développement, l’écologie, la biologie moléculaire et la génétique des populations et nous employons des méthodes descriptives, expérimentales et de modélisation.

  • Axe 1. Implication de la socialité dans l’adaptation aux habitats

    Chez les espèces sociales, l’adaptation à l’environnement passe non seulement par les individus mais aussi par la société. Les changements récents dans l’usage des sols (intensification de l’agriculture, déforestation, pollutions métalliques et organiques, urbanisation) et les changements climatiques entraînent une perte, une fragmentation et une dégradation des habitats qui peuvent avoir des effets à tous les niveaux de la biodiversité.
    Nous étudions comment ces modifications impactent les communautés, les stratégies de reproduction et la dispersion des sociétés d’insectes.

    1) Les espèces présentes dans les milieux naturels et anthropisés sont délimitées et identifiées en combinant des données de morphologie et moléculaires afin de mieux en décrire la diversité et les particularités. L’effet de la perturbation des écosystèmes sur l’assemblage des espèces est appréhendé au travers de l’étude de la composition et de la richesse en espèces, et de leur structuration en régimes trophiques. Nous quantifions également la différenciation génétique et morphologique de populations urbaines et forestières. Les colonies sont exposées à des environnements stressants au laboratoire afin de tester si les populations urbaines y sont mieux adaptées. Ces travaux sont réalisés en collaboration avec Claudie DOUMS (MNHN).

    2) La caractérisation des stratégies de reproduction et de dispersion des colonies (nombre d’accouplements, nombre et origine des reproducteurs, fondation indépendante, fission, investissement dans la croissance et dans la reproduction) face à la modification de leur habitat est réalisée en utilisant conjointement des méthodes moléculaires, des approches de génétique du paysage, et des modèles mathématiques à base d’agents dans un environnement spatialement explicite.

    3) Contrairement aux organismes solitaires, les individus des espèces sociales ne font pas entièrement face à l’environnement extérieur, car celui-ci est filtré par la société. L’environnement social pourrait donc jouer un rôle majeur dans l’adaptation de ces espèces aux changements environnementaux. En manipulant les environnements externe et social et la diversité génétique des individus nous quantifions la contribution de ces facteurs à la valeur sélective des colonies.

  • Axe 2. Diversité des traits d’histoire de vie

    La diversité des cycles de vie coloniaux, des phénotypes adultes, et les mécanismes de leur production sont abordés selon différents exemples :

    1) La stratégie de formation des colonies par fission est étudiée à l’aide de modélisations combinant agents et expériences en milieu semi-naturel.

    2) Nous décrivons la biomécanique du transport de charge en nous intéressant à la diversification évolutive des adaptations musculo-squelettiques, en utilisant l’imagerie microtomographique en collaboration avec Evan P. ECONOMO (Okinawa Institute of Science & Technology). Nous départageons les effets liés à la miniaturisation et à la phylogénie, et nous nous intéressons notamment à la différence entre soldats (grosses têtes) et ouvrières. Le « central place foraging » et la défense du nid sont considérés.

    3) Une méthode d’élevage de larves de fourmis avec peu ou pas d’ouvrières est développée afin de quantifier l’implication de l’environnement social dans la diversité des phénotypes produits par les colonies, en collaboration avec Brian L. FISHER (California Academy of Sciences.

  • Axe 3. Interactions au sein des communautés

    La diversité et le succès écologique des insectes sociaux résultent en partie des interactions qu’ils ont développées au cours de l’évolution avec d’autres espèces, notamment les microorganismes.

    1) Chez les termites, les endo- et exosymbiontes digestifs sont déterminants. Les modalités du maintien de ces symbiontes à travers les générations par transmission horizontale via l’environnement ou verticale via les reproducteurs sont déterminées par des méthodes de pyroséquençage et d’écologie comportementale grâce aux élevages au laboratoire.

    2) Une étude expérimentale de l’interaction fourmis/pucerons est entreprise en nous focalisant sur sa plasticité. En particulier sa nature mutualiste, ou prédatrice, peut être mise en évidence en manipulant les bénéfices obtenus par les fourmis selon qu’une colonie de fourmis a le monopole d’une colonie de pucerons ou l’exploite.

    3) Nous décrivons de nouveaux exemples d’interactions écologiques de prédation, d’herbivorie, de parasitoïdisme et de symbiose établies entre les insectes sociaux et d’autres espèces.

  • Axe 4. Applications

    Au-delà de nos recherches fondamentales, une partie de nos études est directement valorisable.

    1) Des méthodes de lutte biologique durables et respectueuses de l’environnement contre certaines espèces de termites et de fourmis ravageuses dans les systèmes agricoles sont mises au point. Il s’agit d’appâts non toxiques pour l’environnement qui affectent directement le potentiel de développement de la colonie et pas seulement les individus fourrageurs. Des phéromones de piste spécifiques permettent d’attirer vers les appâts toxiques les espèces cibles.

    2) L’originalité et les performances du microbiote intestinal des termites dans la dégradation des composés ligno-cellulosés en font un élément clé des nouvelles recherches en biotechnologie. En partenariat avec des industriels, nous participons au développement de leurs utilisations potentielles en fermenteurs.

    3) Une lignée cellulaire est développée à partir d’une espèce de fourmi pour l’étude du cycle cellulaire avec une meilleurs compréhension de la multiplication cellulaire en lien avec le cancer, en collaboration avec Alain Debec (Institut Jacques Monod)

Ces quatre grands axes sont dynamisés par le maintien de diverses espèces de termites et de fourmis dans nos infrastructures d’élevages et d’expérimentations tropicales et tempérées.

Mathieu MOLET, MC UPMC, chef de l’équipe ESEAE



Portfolio