bannière © iEES Paris logo_UPMC logo_UPEC logo_Paris-Diderot logo_CNRS-INEE logo_IRD Accueil Accueil

Suivez nous sur

twitter
facebook

Rechercher



Accueil du site > Départements scientifiques > Diversité des communautés et fonctionnement des écosystèmes > Les équipes > Ecologie integrative : des mécanismes aux services ecosytémiques (EMS)

Ecologie integrative : des mécanismes aux services ecosytémiques (EMS)

-------------------------------------------------------------------------------------------


Thématiques de recherche

L’écologie est par définition une science non-réductionniste qui vise à comprendre et prédire les propriétés de systèmes écologiques qui sont à la fois biologiques, physiques et chimiques à des échelles variées, de l’agrégat de sol à la biosphère dans son entier. Cependant l’écologie s’est structurée, ces dernières décennies, en sous-disciplines centrées sur des processus (ex : dynamique de la matière organique), des échelles d’organisation (ex : écologie des populations) ou des groupes d’organismes (ex : écologie microbienne) particuliers.
Cette évolution, qui exprime le poids grandissant de l’écologie dans le concert des sciences, remet constamment en cause l’objectif d’intégration. Même l’écologie des écosystèmes, qui par définition travaille à une échelle d’organisation élevée, a eu tendance à se cantonner à l’étude des flux de matière et d’énergie en minorant l’importance de la dynamique des populations ou de la génétique et n’a pas toujours été aussi intégrative qu’elle aurait pu l’être.
L’objectif général de l’équipe EMS est donc de combler certains de ces manques en étudiant le fonctionnement des écosystèmes avec une approche très intégrative.

Notre démarche d’intégration repose sur trois piliers :

  • La modélisation, qui permet à la fois d’explorer des mécanismes écologiques peu connus et de coupler des mécanismes déjà connus mais modélisés de façon indépendante dans d’autres sous-disciplines de l’écologie voire d’autres disciplines scientifiques (physique par exemple)
  • Le constat que les grands cycles de la matière (eau, N, P, C...), qui dépendent d’interactions complexes entre les organismes vivants et leur milieu physico-chimique, sont un angle d’attaque particulièrement pertinent pour coupler écologie fonctionnelle, dynamique des populations, écologie évolutive, et biogéochimie
  • La spatialisation qui permet de combiner les diverses échelles pertinentes, de prendre en considération l’hétérogénéité spatiale des écosystèmes et de tenir compte du fait que la majorité des interactions écologiques sont régies par des relations de voisinage.
    Nous cherchons donc à comprendre et analyser expérimentalement ou par des observations, puis à représenter par des modèles couplés les grands cycles de la matière (nutriments minéraux, carbone) en prenant en compte à la fois des processus classiquement étudiés en écologie des écosystèmes (ex : nitrification ou influence de la texture du sol sur la rétention des nutriments) mais aussi des processus traditionnellement étudiés en écologie des populations (ex : démographie) et des communautés (ex : prédation, compétition). Pour cette raison, l’équipe regroupe des expérimentateurs et des modélisateurs, qui ont presque tous une expérience de l’autre spécialité et qui ont travaillé en collaboration étroite depuis de nombreuses années.
    Notre démarche inclue une dimension évolutive explicite afin de comprendre comment l’évolution darwinienne façonne certains traits des organismes qui en retour influencent les propriétés des écosystèmes.
    Nous cherchons ainsi à faire converger les sous-disciplines de l’écologie évolutive, l’écologie des populations et l’écologie des écosystèmes. Cette démarche est originale dans la mesure où les approches les plus centrées sur la physico-chimie (écologie des sols, géochimie) se sont développées en partie indépendamment de celles centrées sur les organismes (démographie et écologie évolutive).
    L’équipe étant centrée sur le couplage et l’interaction de processus écologiques variés, elle associe des expériences de terrain, des expériences de laboratoire et de la modélisation.

Les travaux de l’équipe sont structurés autour de trois axes principaux de recherche et de deux axes transversaux :

► Interactions entre fonctionnements des compartiments aérien et souterrain

Cette thématique est pertinente car elle oblige à lier le recyclage des nutriments minéraux, le sol et les producteurs primaires, et permet d’intégrer les stratégies de développement des plantes (allocation, architectures aérienne et racinaire) et l’ensemble des réseaux d’interactions trophiques et non-trophiques ayant lieu dans le sol et au-dessus du sol.
Ainsi, cela permet d’aborder, par exemple dans les savanes tropicales (axe 4), l’impact des herbivores sur la croissance des plantes et ses répercussions sur les organismes du sol et le recyclage des nutriments ou, dans les écosystèmes tempérés prairiaux, l’impact des interactions entre plantes sur le réseau plante pollinisateur.
Cela permet aussi d’étudier les réseaux d’interaction complexes entre les décomposeurs (bactéries, vers de terre...) et les plantes et pouvant inclure les prédateurs de décomposeurs (protozoaires, nématodes...), des herbivores souterrains ou aérien.
Cet impact sur les plantes doit être étudié en termes de croissance, d’allocation des ressources, de survie, de fécondité… Un exemple type de cet axe de recherche est l’étude, que nous poursuivrons, de la nitrification et de son contrôle direct par les bactéries et indirect par les plantes qui modulent l’activité bactérienne. L’intensité de la nitrification détermine en partie les pertes d’azote dans l’écosystème, donc la fertilité des sols, et la production primaire.
La disponibilité du sol en azote pilote aussi la compétition entre espèces végétales et donc la démographie des plantes. Cette problématique implique l’étude de mécanismes fins à l’échelle des microorganismes du sol (analyse de la diversité des communautés microbiennes, de leur activité enzymatique et des flux de nutriments minéraux et de carbones consécutifs) afin de prédire des flux de nutriments à l’échelle de la parcelle.
Par ailleurs, nous poursuivons des travaux sur le cycle du carbone (et donc des nutriments minéraux liés au carbone) centrés sur l’équilibre entre dégradation et accumulation, c’est à dire sur le priming effect. Nous analysons en particulier les mécanismes du priming effect et les facteurs, notamment écologiques (communautés microbiennes, plantes), qui en contrôlent l’intensité en comparant écosystèmes terrestres et aquatiques afin de faire émerger des principes communs à ces systèmes.

► Organisation spatiale et fonctionnement des écosystèmes

Les systèmes écologiques sont structurés spatialement à toutes les échelles (distribution spatiale des bactéries dans le sol, structuration du sol en agrégats, propriétés physicochimiques du sol à l’échelle de la parcelle, distribution spatiale agrégée de la biomasse des plantes et des individus qui la composent. Il est maintenant clairement admis que cette structuration spatiale résulte largement de la dynamique des populations et des communautés et du fonctionnement des écosystèmes et qu’elle conditionne en retour très fortement l’organisation et la dynamique des systèmes écologiques.
La distribution des individus dans un couvert végétal contrôle par exemple la distribution des nutriments dans le sol et les flux de ces individus, qui eux-mêmes rétroagissent sur la structuration spatiale de l’écosystème. Une partie importante des travaux de l’équipe sont consacrés à cette question par la combinaison d’études de terrain (savanes tropicales, voir axe 4) et de modélisation (voir axe 5).
L’organisation spatiale est, au même titre que les grands cycles des matières, un élément essentiel du couplage entre processus écologiques. Elle est en effet présente en filigrane dans pratiquement tous ces processus, même quand ils relèvent de sous-disciplines différentes de l’écologie.
L’étude de l’organisation spatiale, des processus conduisant à cette organisation et les conséquences de cette organisation requière à la fois des méthodes d’étude particulières sur le terrain et des modèles originaux (voir axe 5) ainsi que leur association.
Que ces modèles soient spatialement implicites ou spatialement explicites, ils utilisent cependant des formalismes communs (géométrie, topologie, statistiques) permettant de les utiliser comme outil de couplage de processus souvent étudiés par des domaines très différents de l’écologie (ex : démographie et flux de nutriments, exemple du modèle 3Worlds, développé dans l’équipe).

► Ingénierie écologique

L’ingénierie écologique vise explicitement à utiliser les résultats de l’écologie fondamentale pour augmenter l’intensité et la durabilité de la fourniture de services écosystémiques par des écosystèmes, anthropisés ou non. Les membres de l’équipe jouent un rôle important dans le développement de cette discipline sur le plan national (association Groupe des Acteurs de l’Ingénierie Ecologique, organisation d’un congrès international en 2009). Ils focalisent leurs efforts dans ce domaine, d’une part dans un contexte agronomique et d’autre part dans un contexte urbain.
Dans le premier cas, il s’agit d’intensification écologique ou d’agroécologie. Nous cherchons en particulier à appliquer aux agro-écosystèmes les connaissances acquises sur des écosystèmes naturels et productifs comme la savane du LAMTO (axe 4). Cette approche est particulièrement pertinente dans des pays tropicaux en voie de développement, où l’agriculture ne peut économiquement pas être basée sur une utilisation importante d’intrants. Cette approche est aussi pertinente afin d’augmenter la durabilité de l’agriculture « moderne » utilisant massivement des intrants.
Dans le deuxième cas, il s’agit d’analyser le fonctionnement des écosystèmes urbains (en particulier les liens entre compartiments sols et végétaux) et de déterminer si des pratiques alternatives de gestion de ces écosystèmes particuliers peuvent permettre d’augmenter certains services écosystémiques comme le stockage de carbone, ou si l’on peut concevoir de nouveaux écosystèmes (ex : toits verts) plus performants (ex : limiter les pertes de nutriments minéraux tout en favorisant la production primaire, les stocks de carbone et la stabilité du système écologique...).

► Axe transversal 1 : Fonctionnement et dynamique des écosystèmes tropicaux

Historiquement, une part importante des membres de l’équipe a participé à l’étude de la savane du LAMTO en Côte d’Ivoire. Nous cherchons à capitaliser le bénéfice de cette longue expertise en poursuivant le travail dans différents écosystèmes tropicaux (LAMTO, Parc National de Hwange au Zimbabwe, Burkina Faso, Sénégal…) sur la dynamique des ligneux et des graminées, la façon dont cette végétation et sa structuration spatiale (axe 2) influencent certains flux de nutriments et le fonctionnement du sol, et enfin comment ces processus associés aux changements globaux jouent sur la dynamique à long terme de ces savanes.
Ce type d’étude implique de développer des outils fins permettant à la fois de travailler sur la dynamique de populations de plantes dont la démographie est mal connue et sur le fonctionnement du sol (microbiologie, utilisation d’outils moléculaires jusqu’à présent très peu utilisés dans ce contexte).

►Axe transversal 2 : Modélisation

La modélisation est présente dans tous les axes de recherche de l’équipe car c’est, en premier lieu, un outil performant pour analyser les systèmes écologiques complexes que nous étudions et pour formuler des prédictions sur la dynamique de ces systèmes. Mais nous utilisons aussi la modélisation comme outil d’exploration des lois générales qui conduisent à l’organisation et à la dynamique des systèmes écologiques.
L’équipe construit donc aussi bien des modèles théoriques qui ne sont pas nécessairement paramétrés avec des données de terrain, mais dont la simplicité permet un traitement analytique, que des modèles basés sur des situations concrètes, souvent des modèles de simulation, et paramétrés avec des données de terrain.

Sébastien BAROT, DR IRD, et Jacques GIGNOUX, CR CNRS et chef de l’équipe EMS.